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Using the concepts developed in [l] we investigate, in the presence of certain 

restrictions, the stability of a weakly inhomogeneous state parametrically per- 
turbed by a small random addition of white noise, We show that when the char- 
acteristic wavelength is arbitrarily small as compared with the distance over 

which it varies substantially, then the mechanism of formation of the eigenfunc- 
rions responsible for the stability of the state is analogous to the mechanism 
given in flf t In the present case it is not the boundaries that act as reflectors, 

as in [I], but the points at which the condition of existence of the global eigen- 

function far the homogeneo~ problem holds, We obtain the criterion of stabi- 
lity of the state in question and discuss the Problem of application of the results 

obtained ta the case in which the ratio of the characteristic wavelength to the 

distance over which it varies substantially~cannot be taken as arbitrarily small. 

1. The statement of the problem is analogous to that given in [l]. We consider the 

following homogeneous problem : 
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Here N is the order of the system (1.1) with respect to 5, uiKmz and dikrnl are func- 
tions with the characteristic scales and moduli of order of unity, F is a real stationary 
random function with characteristic scale and modulus of the order of unity, 8, h and 

6 are small real parameters and 

{F(8)) -0, (F@)F(B’)) =exp[-(0-0’)2] (1.2) 

a5 <h <E, 6 < 6 < ~9, a > a, > 0 

where the angular brackets denote averaging over the ensemble. 
We assume that the dispersion relation for the system (1.1) without the right-hand 

side term contained within the square bracket 

det [xajkml (EX) hiphI = 0 
i/i 

0.3) 

satisfies, on the real axis, the Petrovskii condition uniformly in x [I, 21. This means 
that p,,exists such, that Re hi < 0 (i = 1, . . . , S) and Re hi > 0 (i =: s j- 1, 
. . . ) N) when Rep > Ke PO uniformly in X. The problem is assumed to be stated 

correctly [l. 31, i.e. there are s boundary conditions at the zero and N - s bound- 
ary conditions at x = L i E . It is also assumed that the form of the operator in (1.1) 

is such, that the problem of solution stability can be reduced to that of finding the solu- 
tions of the form Y, = exp (pt) Ypm (5). 

2, After the substitution Y ,,, = esp (pt) Y m (z) and change of the unknowns the 
problem (1.1) reduces to the following : 

yi’ - +- yi = cil;y/; + + d,,F ( $) yh. (2.1) 

bkiyi (0) = 0, k = I, * . . 7 S (2.2) 

bk& (L) =; 0, k = s + 1,. . . , N 

in which I): have been replaced by z / e and Xi (x, p) are roots of Eq. (1.3). 

Letusconsiderafamilyofcurves Re(h,-La,)=0 (i<s, k>s) inthep- 
plane. When 5 varies continuously over the interval (zi, XJ , the curves fill a certain 
region to the left of po. Let us denote by r (zi, x2) the envelope of this family. We 
assume that Z’ (0, L) or at least the part of .r (0, ~5) lying near the largest pr = 
Rep, has the following property: & (p) # 1Lk (p) (i < s, k > s, p E T (0, L)). 

The following assertion will be needed in the subsequent analysis. 
Assertion 1. Let A > 0 exist such that 

maxi<, Re hi + 3A < mini,,. Re hi 

uniformly in J;, 5 E (x1, ~~1. Then for the solution of (2.1) such that 

.l/im(%) =di* (iGry mG,Op yim(zz) = 0 (i>r’. ngr) 

the estimates 
1 Yim 6%) 1-S =,@I: 4, 1 him (XI) I< 2eM /A (2.3) 

Ii (% 2,) = exp (+ i* /ids) , fi - maxiCr Reh, + A 

n/r = max (maxi(max,lci,l, maxi; max,.dik I) 
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hold, and they are proved as follows. Integration and substitution yi = ui1, (x1, X) 
reduces (2.1) to the form 

x 9 

Uik(% 4 = U Cik $ i di,F eXp ) 
x1 

The functions ui are sought in the form ui = ui(O) + ~‘1) $ . . . . The estimates for 

u.$“) are easily obtained and the estimates given above for yirn follow from them. In 

the same manner we show that for the solutions of (2.1) such that 

Yim(d =b,, i>r, m>r; yim (2,) =O, i<r,nz>r 

the estimates 

1~ (5s75i) = exp (-$ f f&r) , js = mini,, Rehi - A 
x2 

hold. Using the estimates (2.3) and (2.4) we can prove the next assertion which will be 
necessary in what follows. 

Assertion 2. Let p lie to the right of r (0, U) and det (bi, (p)) + U (i < s, 

k < s). Then the boundary conditions (2.2) can be transferred from 0 to a, where 

they will assume the form 

(bk+&&k)Yk(a) =o, i<S (I&kj<l) 

The boundary conditions at L / E can be transferred to the left under the similar con- 

ditions. When p lies to the right of I’ (0, L) , we have 

maxiGs Re hi i_ 3A < min i ,s Re Ri 

Writing the equations for the eigenvalues in the determinant form [l] and using the 

estimates of Assertion 1, we can obtain the next assertion. 

Assertion 3. A value of p lying to the right of r (0,L) can be an eigenvalue 

of the problem (2.1). (2.2) if and only if 

det (bik (p)) =O, i < s, k Q s or det (hik(p)) =O, i > s, k > s 

The instability generated by such eigenvalues 
is called limiting instability Cl]. 

Fig. 1 depicts the behavior of the quantity 

A = Re [ (h,,, - h,) dt 

for the values of p liing to the left of I’ (0, 
L), sufficiently close to the points on the 

0 x & 
curve Re (a, - a,+,) = 0 belonging to 

a 5.1 b L 
I’ (0, L) . On a certain interval [ (1, (11 such 

Fig. 1 that 
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Re E’(L+l -hs)dt> 0, Re i (L, - h,)>O 

the following conditio$ hold : 
%l 

maxiqs Re h; + 2A < Re h, < min~>8+.l Re hi - 2A 
ma&,, Re hi+2AGRe A,+l<mini,,.cl He hi-2A 

(2.5) 

For such values of P the estimates (2.3) and (2.4) become insufficient for the study of 

the equations for the eigenvalues. Two solutions of the system (2. l), namely s and 
s + 4, are found in the form of series in h i E. We assume that when h = 0 , the sys- 

tem (2.1) has solutions in I tz, b] of the form 
.X 

exp (+ 5 A&) (&, + E&), 
a 

exp (+ 1 L+rdt) (&+r + &&+I) 

If p lies sufficiently close to r (0, L), then solutions of this form obviously exist 

(2.7) 

The solution yis+l can be obtained in the analogous manner, but s in the formulas 

(2.6) and (2.7) must be replaced by s + 1 , s + 1 by s, a by b and b by n. In 
addition, the signs of all inequalities in (2.6) except that for @‘i r6 , must be reversed. 

When E -t-O , the random quantities yS+ls (6) and ySS+l (a) tend to their root 
mean square values [4] 

i.e. 
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(I Y,,l, @) - z,+1s I2 ) 
--, O3 

(I YSSil (a) -~- zss+1 I*) 
(I z SflS I2 ) (I z,,<+1 I2 ) 

_~ 0 (2.10) 

When E -to , (2.6), (2.7) and the form of the correlation function together. readily 

(I Yst1s - Zst1s 12> - h362e-‘i2exp (g Re 5 ho,&) 

The above estimates yield the first formula of (2. lo), and an entirely analogous result 

can also be obtained for the second formula. 

8, When p lie to the left of r (0, L) and sufficiently close to it, the boundary 
conditions can, according to Assertion 2, be transferred from o to a and from L to b 
and then the problem can be considered in the interval [(I, /I]. We can write the equa- 
tion for the eigenvalues only if we know the complete system of solutions of (2.1) on 

n, b . Since the inequalities (2.5) hold on II, b , then N - 2 solutions of (2.1) can 
be taken from Assertion 1, and for these’solutions the estimates (2.3) and (2.4) will hold. 

In this case _/I amd fz have the form 

fi = maxiCs Re hi -+ A, jr-- m&,_+i He hi - A 

The remaining two solutions of (2.1) are given by the formulas (2.6) and (2.7). The 

equation defining the eigenvalues has the form 

Qim (4 Q&l Ca) Qirn (4 
,- i < s, m -<, s i kz s ’ i,<s, m>s-j-1 

Qim (b) Qis (b) Qim (b) 
i>s, m<s’ i ) s i>s, n2>s 

(Oil (4 = (6s 4 ~Tid ~h.1 (4) 
and can be written as 

1 - q (x,+1, x,) z1z2 i- y x 0 

(3.1) 

:= 0 

(3.2) 

From the estimates (2.3) and (2.4), the form of the s -th and ( s $- 1 )-th solutions and 
the formula (2.10) it follows that y is small compared with the other two terms of (3.2). 

For this reason below we shall consider the equation 

1 - cp (x,+1, x,> z1, 22 =o (3.3) 

which is equivalent to the system 

lcp bs' %I) I2 = 8 Q = 12112 Iz2 I2 

()2112> (1 z2(2> ' (1 zip) <) 2212) 

-Ts 

s 
Im (h, - h,+i) dt = ekfi 

%+1 

(3.4) 

(3.5) 

In (3.5) the small terms e(pi and E(P~ are neglected ; ‘p1 and ‘p2 are the arguments of 
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z1 and zs. 
In what follows, we must learn the probability density of the quantity 8. When E --+ 0 , 

the real and imaginary partsof zi and z2 have the form of stochastic integrals and are 
distributed in accordance with the normal rule [4]. Any linear combination of the ima- 
ginary and real parts of zi as well as of 2s has the form of stochastic integrals and is 

distributed normally. This implies that the two-point densities p (Rez,, Im z) have 

the normal form. Rearranging p (Rez,, 

P (IslIz) and p (1.~~ 1”) 

Im z) we can obtain p (J z 12). Rearranging 

an assuming that z1 and z2 are independent, we can easily d 
obtain the required density p (0) ( zi is determined by the neighborhood of x,+1, and 

zs by the neighborhood of x,and F can be correlated at the distances of the order of 

~6, therefore zi and .zs can be assumed independent provided that x, - x,+i > ~6 ). 
Performing the computations based on the above arguments. we obtain 

m 

p(e)=;{ +exp(+t)dt 
0 

(3.6) 

Expressing pi from (3.5) in terms of pr and substituting this into (3.4), we obtain the 
equation for pT. 

We introduce 7c) (p,) in the following manner: 

I cp (“,7 “s+J I2 _ () 

* (pJ = (1 Zl 1%) <I zz 12) (3.7) 

We shall say that $ (pr) has a zero in the interval [pr - ApT, pr + Ap,] if the 

probability that $ (p, + ApT) > 0 and $(p,--Ap,)<O is(1 -E). Letus 
write the expression for ‘$ (pr) in the neighborhood or the point pr in which the first 
term of (3.7) is unity 

q (pr + Ap,) e exp (-- q S) - 0 (3.8) 

S= 
Is . 8 Re (?L,~ - hs+i) s +T 

at 

%t1 

Let P, be the probability that g (p, + Ap$l)) < 0 and P, the probability that 

‘II, (or t APP'> > 0 

p, = y p (0) de, 

CP 

P, = \ p (0) de, cl = exp 
( 

2APS) S) ( 1=1,2 
E . . 

Cl 0 

Equations Y i = E and P, = E yield Ap,.(l) and Ap,(2) 

Ap,‘l) N - eln jlne 1 s-l, APT@) = - E h &s-l (3.9) 

From (3.4), (3.5) and (3.9) it follows that the eigenvalues of the problem (2. l), (2.2) 
with the largest pr , lie at the distance 

I APT I < I& ln E S-’ I (3.10) 

from any point of the curve defined by the equation 

I’p (XSl x,+1) I2 <I Zl 12) (I %I"> = 1 (3.11) 

It can be shown, using (3.6) that the probability of the zeros (3.8) lying to the left 
and right of the curve (3.11) is of the order of unity. The relation (3.10) with E + 0 



yiefds the strip with Ap, and the distance between the curve of eigenvalues given by 

(3.11) and I? (0, -L) AP,O 

Apr - ~‘lp In-“3 (jj,yjfy-‘9, Ap,, -= &*, 3 ln*!s (h&‘i’z) (3.W 

Thus when e -+O , the solution of (1.1) is stable if I’ (0, L) lies in the left half-plane 
of p, and unstable if I’ (0, L) enters the right half-plane, 

With the exception of (3,12), the formulas derived above can be used in certain cases 

when E is small but finite, This is possible when the condition He {hi - h t+) 0 ( i ;;< 
s, k ) S) holds in the half-plane, pr > 0 only for a sing&r pair of values ( i s! 
k = s -j- 1) (which ensures that the inequality (2.5) holds in some 1 n. h] (n -::I ~:~+l, 
b > xs) and the system (2.1) with h =: 0 has solutions of the form 

in [a, b] , This makes it possible to write the s and ( s -+ 1 ) solutions in the form 
(2.6). In this case the stability is determined by the position of the curve (3,111. 

Example, We consider the stability of a rod in the form of a long, thin plate of 

variable width (length L i E, width I (~4 and 
thickness d 4 I) moving through a gas at a very 

high supersonic speed (Fig. 2). The force acting 

v on the unit surface of the rod is approximately 

PI 
q=B 

( 
$V-$) 

Fig. 2 
where (W (3, y, 8) is the coordinate of the rod 

surface. When B is small (i. e, at low gas pres- 

sure), the effect of the force 4 on the transvese oscillations of the rod can be neglected 
and only its action on the torsional oscillations taken into account. This is related to the 

fact that the torsional moment M produced by the force 4 is proportional to F and the 

torsional stiffness c - 2. The simphfication achieved by the above procedure does not 

alter the crux of the matter, but leads to a simpler dispersion relationshIp. 
The oscillation equations have the form 

flere EJ is the flexural rigidity, c is torsional stiffness, I is the moment of the unit 

rod length relative to its center of inertia, 7f3 which is the mass of the unit rod length 

and 1 are both functions of EX , and hF (I / 6) is the distance between the center of 
gravity and the center of stiffness of the rod cross section (white noise). In general, the 
slowly varying fictions may contain additional small random terms, but compared with 

h.B’ (z / 8) they do not contribute anything new and are therefore neglected. 
It can easily be shown that the system given above is formally identical to (1.1) and 

satisfies all necessary restrictions. Equation (1.3) for this case assumes the form 

EJhd + mp2 = 0, c?b” -+ + BP (hV - p) - IpZ = 0 
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I' (0, L) is found from equation 

951 

and lies in the right half-plane if max, (II’s I c) > 1. Thus a rod of sufficient length is 

stable if max, (IV2 I c) < 1 and unstable if max, (IV” / c) > 1. 
The concepts developed above can also be used in the problems which can be reduced 

to infinite systems of ordinary differential equations, such as e. g. the problems of hydro- 

dynamic stability. 
The author thanks A.G..Ku~kov~ii for valuable comments and V,fa, Levchenko for 

discussing the problems related to the present paper. 
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An extension of the equivalence of “area” rule [I, 21 is presented. The rule was 
initially derived for stationary flows of perfect finviscid and non-heat-conduc- 

ting) gas past slender fine pointed bodies (or blunted bodies in the hypersonic 
flow case) whose transverse dimensions are small in comparison with their Iength, 
According to that rule the wave drag of a three-dimensional body is equal to the 

wave drag of an axisymmetric body with the same distribution of cross-sectional 

areas along the axis. The rule is extended here to stationary and nonstationary 
flows past nonslender bodies and to internal flows, using the procedure of averag- 
ing with respect to the angular variable of a cylindrical system of coordinates, 
That procedure is, strictKy speaking, valid for nearly axisymmetric bodies. How- 

ever the numerical solutions obtained by the authors for a fairly wide range of 
external and internal problems show that the generalized equivalence rule is 
applicable to Substantially nonaxi~mme~ic ~n~g~ations (*) (see next page), 


